{-# OPTIONS --without-K --safe --lossy-unification #-}
module Prelude where
import Categories.Morphism.Reasoning
open import Categories.Category public
open import Categories.Category.BinaryProducts using (BinaryProducts; module BinaryProducts) public
open import Categories.Category.Construction.Functors using (Functors; curry)
renaming () public
open import Categories.Category.Construction.Monoids using (Monoids) public
open import Categories.Category.Monoidal using (Monoidal; monoidalHelper) public
open import Categories.Category.Monoidal.Braided using (Braided) public
open import Categories.Category.Monoidal.Symmetric using (Symmetric) public
open import Categories.Category.Monoidal.Closed using (Closed) public
open import Categories.Category.Product using (_⁂_; _⁂ⁿ_;_※_; _※ⁿ_; Swap; assocˡ; assocʳ; πˡ; πʳ)
renaming (Product to _×ᶜ_) public
open import Categories.Comonad using (Comonad)
renaming (id to idCM)
hiding (module Comonad) public
open import Categories.Comonad.Morphism using (module Comonad⇒-id)
renaming (Comonad⇒-id to _CM⇒_; Comonad⇒-id-id to CM⇒-id; Comonad⇒-id-∘ to _∘CM_) public
open import Categories.Functor using (Functor; Endofunctor; _∘F_)
renaming (id to idF) public
open import Categories.Functor.Bifunctor using (Bifunctor) public
open import Categories.Functor.Construction.Constant using (const) public
open import Categories.Monad using (Monad)
renaming (id to idM)
hiding (module Monad) public
open import Categories.Monad.Morphism using (module Monad⇒-id)
renaming (Monad⇒-id to _M⇒_; Monad⇒-id-id to M⇒-id; Monad⇒-id-∘ to _∘M_) public
open import Categories.NaturalTransformation using (NaturalTransformation; _∘ʳ_; _∘ˡ_; _∘ᵥ_; _∘ₕ_; ntHelper)
renaming (id to idN) public
open import Categories.NaturalTransformation.Equivalence using (_≃_; ≃-isEquivalence) public
open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; niHelper)
renaming (_≃_ to _≃ⁿ_; sym to symⁿⁱ) public
open import Categories.NaturalTransformation.NaturalIsomorphism using (_ⓘᵥ_; _ⓘₕ_; _ⓘˡ_; _ⓘʳ_; associator; sym-associator)
renaming (_≃_ to _≃ⁿ_; refl to reflⁿⁱ) public
open import Categories.NaturalTransformation.Properties using (replaceˡ; replaceʳ) public
open import Categories.NaturalTransformation.Properties using (replaceˡ; replaceʳ) public
open import Data.Product using (Σ; _,_; _×_)
renaming (proj₁ to fst; proj₂ to snd) public
open import Level using (_⊔_; Level)
renaming (suc to lsuc) public
module MR {o ℓ e} (C : Category o ℓ e) where
open Categories.Morphism.Reasoning C public
module Monad {o ℓ e} {C : Category o ℓ e} (M : Monad C) where
open Categories.Monad.Monad M public
open Functor F public
module Comonad {o ℓ e} {C : Category o ℓ e} (W : Comonad C) where
open Categories.Comonad.Comonad W public
open Functor F public
infixr -1 _$_
_$_ : ∀ {ℓ₁ ℓ₂} {A : Set ℓ₁} {B : A → Set ℓ₂} →
((x : A) → B x) → ((x : A) → B x)
f $ x = f x
{-# INLINE _$_ #-}