{-# OPTIONS --without-K --safe #-}
open import Level
open import Categories.Category using (Category)
open import Categories.Comonad using (Comonad) renaming (id to idCM)
open import Categories.Functor renaming (id to idF)
import Categories.Morphism.Reasoning as MR
open import Categories.NaturalTransformation renaming (id to idN)
open NaturalTransformation
module Categories.Comonad.Morphism {o ℓ e} {C : Category o ℓ e} where
module _ {D : Category o ℓ e} where
record Comonad⇒ (S : Comonad C) (T : Comonad D) : Set (o ⊔ ℓ ⊔ e) where
private
module S = Comonad S
module T = Comonad T
open module D = Category D using (_∘_; _≈_)
field
X : Functor C D
α : NaturalTransformation (T.F ∘F X) (X ∘F S.F)
module X = Functor X
module α = NaturalTransformation α
field
counit-comp : ∀ {U} → X.₁ (S.ε.η U) ∘ α.η U ≈ T.ε.η (X.₀ U)
comult-comp : ∀ {U} → X.₁ (S.δ.η U) ∘ α.η U ≈ α.η (S.F.₀ U) ∘ T.F.₁ (α.η U) ∘ T.δ.η (X.₀ U)
record Comonad²⇒ {S : Comonad C} {T : Comonad D} (Γ Δ : Comonad⇒ S T) : Set (o ⊔ ℓ ⊔ e) where
private
module S = Comonad S
module T = Comonad T
module Γ = Comonad⇒ Γ
module Δ = Comonad⇒ Δ
open module D = Category D using (_∘_; _≈_)
field
m : NaturalTransformation Γ.X Δ.X
module m = NaturalTransformation m
field
comm : ∀ {U} → Δ.α.η U ∘ T.F.₁ (m.η U) ≈ m.η (S.F.₀ U) ∘ Γ.α.η U
record Comonad⇒-id (T S : Comonad C) : Set (o ⊔ ℓ ⊔ e) where
private
module T = Comonad T
module S = Comonad S
open module C = Category C using (_∘_; _≈_)
field
α : NaturalTransformation T.F S.F
module α = NaturalTransformation α
field
counit-comp : ∀ {U} → S.ε.η U ∘ α.η U ≈ T.ε.η U
comult-comp : ∀ {U} → S.δ.η U ∘ α.η U ≈ α.η (S.F.₀ U) ∘ T.F.₁ (α.η U) ∘ T.δ.η U
module _ {T : Comonad C} where
private
module T = Comonad T
open Comonad⇒-id
open Category C
open HomReasoning
open MR C
Comonad⇒-id-id : (Comonad⇒-id T T)
Comonad⇒-id-id .α = idN
Comonad⇒-id-id .counit-comp {_} = identityʳ
Comonad⇒-id-id .comult-comp {U} = begin
T.δ.η U ∘ id ≈⟨ id-comm ⟩
id ∘ T.δ.η U ≈⟨ refl⟩∘⟨ introˡ T.F.identity ⟩
id ∘ T.F.F₁ id ∘ T.δ.η U ∎
module _ {S R T : Comonad C} where
private
module S = Comonad S
module T = Comonad T
module R = Comonad R
module C = Category C
open Comonad⇒-id
open C using(_∘_; _≈_)
open MR C
open C.HomReasoning
open Comonad
Comonad⇒-id-∘ : (Comonad⇒-id T R) → (Comonad⇒-id S T) → (Comonad⇒-id S R)
Comonad⇒-id-∘ σ τ .α = σ .α ∘ᵥ τ .α
Comonad⇒-id-∘ σ τ .counit-comp {U} = begin
R.ε.η U ∘ (σ .α ∘ᵥ τ .α) .η U ≈⟨ pullˡ (σ .counit-comp) ⟩
T.ε.η U ∘ τ .α.η U ≈⟨ τ .counit-comp ⟩
S.ε.η U ∎
Comonad⇒-id-∘ σ τ .comult-comp {U} = begin
R.δ.η U ∘ σ .α.η U ∘ τ .α.η U
≈⟨ pullˡ (σ .comult-comp) ⟩
(σ .α.η (R.F.₀ U) ∘ T.F.₁ (σ .α.η U) ∘ T.δ.η U) ∘ τ .α.η U
≈⟨ assoc²βγ ⟩
(σ .α.η (R.F.₀ U) ∘ T.F.₁ (σ .α.η U)) ∘ (T.δ.η U ∘ τ .α.η U)
≈⟨ refl⟩∘⟨ τ .comult-comp ⟩
(σ .α.η (R.F.₀ U) ∘ T.F.₁ (σ .α.η U)) ∘ (τ .α.η (T.F.₀ U) ∘ S.F.₁ (τ .α.η U) ∘ S.δ.η U)
≈⟨ pullʳ C.sym-assoc ⟩
σ .α.η (R.F.₀ U) ∘ (T.F.₁ (σ .α.η U) ∘ τ .α.η (T.F.₀ U)) ∘ S.F.₁ (τ .α.η U) ∘ S.δ.η U
≈⟨ refl⟩∘⟨ τ .α .sym-commute (σ .α.η U) ⟩∘⟨refl ⟩
σ .α.η (R.F.₀ U) ∘ (τ .α.η (R.F.₀ U) ∘ S.F.₁ (σ .α.η U)) ∘ S.F.₁ (τ .α.η U) ∘ S.δ.η U
≈⟨ pushʳ C.assoc ○ refl⟩∘⟨ C.sym-assoc ⟩
(σ .α.η (R.F.₀ U) ∘ τ .α.η (R.F.₀ U)) ∘ (S.F.₁ (σ .α.η U) ∘ S.F.₁ (τ .α.η U)) ∘ S.δ.η U
≈⟨ refl⟩∘⟨ ⟺ S.F.homomorphism ⟩∘⟨refl ⟩
(σ .α.η (R.F.₀ U) ∘ τ .α.η (R.F.₀ U)) ∘ S.F.₁ (σ .α.η U ∘ τ .α.η U) ∘ S.δ.η U
∎