{-# OPTIONS --without-K --lossy-unification --safe #-}

module Categories.Diagram.End.Fubini where

open import Level
open import Data.Product using (Σ; _,_; _×_) renaming (proj₁ to fst; proj₂ to snd)
open import Function using (_$_)

open import Categories.Category using (Category)
open import Categories.Category.Construction.Functors using (Functors; curry)
open import Categories.Category.Product using (πˡ; πʳ; _⁂_; _※_; Swap) renaming (Product to _×ᶜ_)
open import Categories.Diagram.End using () renaming (End to )
open import Categories.Diagram.End.Properties using (end-η-commute; end-unique)
open import Categories.Diagram.End.Parameterized using () renaming (EndF to )
open import Categories.Diagram.Wedge using (Wedge)
open import Categories.Functor using (Functor; _∘F_) renaming (id to idF)
open import Categories.Functor.Bifunctor using (Bifunctor; appˡ)
open import Categories.NaturalTransformation using (NaturalTransformation)
open import Categories.NaturalTransformation.Dinatural using (DinaturalTransformation; dtHelper)

import Categories.Morphism as M
import Categories.Morphism.Reasoning as MR

variable
  o  e : Level
  C P D : Category o  e

module Functor-Swaps  (F : Bifunctor (Category.op C ×ᶜ Category.op P) (C ×ᶜ P) D) where
  private
    module C = Category C
    module P = Category P

  -- just shuffling arguments
  -- An end of F ′ can be taken iterated, instead of in the product category
  _′ : Bifunctor (P.op ×ᶜ P) (C.op ×ᶜ C) D
  _′ = F ∘F ((πˡ ∘F πʳ  πˡ ∘F πˡ)  (πʳ ∘F πʳ  πʳ ∘F πˡ))

  -- An end of F ′′ is the same as F, but the order in the product category is reversed
  _′′ : Bifunctor (Category.op P ×ᶜ Category.op C) (P ×ᶜ C) D
  _′′ = F ∘F (Swap  Swap)

open Functor-Swaps

module _  (F : Bifunctor (Category.op C ×ᶜ Category.op P) (C ×ᶜ P) D)
          {ω :  ((p , q) : Category.Obj P × Category.Obj P)   (appˡ (F ) (p , q))}
           where
  open M D
  private
    module C = Category C
    module P = Category P
    module D = Category D
    open module F = Functor F using (F₀; F₁; F-resp-≈)
    ∫F = ( (F ) {ω})
    module ∫F = Functor ∫F

    module ω ((p , q) : P.Obj × P.Obj) =  (ω (p , q))

  open _≅_
  open Iso
  open DinaturalTransformation using (α)
  open NaturalTransformation using (η)
  open Wedge renaming (E to apex)
  open Category D
  open import Categories.Morphism.Reasoning D
  open HomReasoning
  -- we show that wedges of (∫.E e₀) are in bijection with wedges of F
  -- following MacLane §IX.8
  private module _ (ρ : Wedge ∫F) where
    private
      open module ρ = Wedge ρ using () renaming (E to x)
    -- first, our wedge gives us a wedge in the product
    ξ : Wedge F
    ξ .apex = x
    ξ .dinatural = dtHelper record
      { α = λ { (c , p)  ω.dinatural.α (p , p) c  ρ.dinatural.α p }
      ; commute = λ { {c , p} {d , q} (f , s)  begin
          F₁ ((C.id , P.id) , (f , s))  (ω.dinatural.α (p , p) c  ρ.dinatural.α p)  id
            ≈⟨ refl⟩∘⟨ identityʳ 
          -- First we show dinaturality in C, which is 'trivial'
          F₁ ((C.id , P.id) , (f , s))  (ω.dinatural.α (p , p) c  ρ.dinatural.α p)
            ≈⟨ (F-resp-≈ ((C.Equiv.sym C.identity² , P.Equiv.sym P.identity²) , (C.Equiv.sym C.identityˡ , P.Equiv.sym P.identityʳ))  F.homomorphism) ⟩∘⟨refl  pullˡ assoc 
          (F₁ ((C.id , P.id) , (C.id , s))  F₁ ((C.id , P.id) , (f , P.id))  ω.dinatural.α (p , p) c)  ρ.dinatural.α p
            ≈⟨ (refl⟩∘⟨ refl⟩∘⟨  identityʳ) ⟩∘⟨refl 
          (F₁ ((C.id , P.id) , (C.id , s))  F₁ ((C.id , P.id) , (f , P.id))  ω.dinatural.α (p , p) c  id)  ρ.dinatural.α p
            ≈⟨ (refl⟩∘⟨ ω.dinatural.commute (p , p) f) ⟩∘⟨refl 
          (F₁ ((C.id , P.id) , (C.id , s))  F₁ ((f , P.id) , (C.id , P.id))  ω.dinatural.α (p , p) d  id)  ρ.dinatural.α p
            ≈⟨ extendʳ ( F.homomorphism  F-resp-≈ ((MR.id-comm C , P.Equiv.refl) , (C.Equiv.refl , MR.id-comm P))  F.homomorphism) ⟩∘⟨refl 
          -- now, we must show dinaturality in P
          -- First, some reassosiations to make things easier
          (F₁ ((f , P.id) , (C.id , P.id))  F₁ ((C.id , P.id) , (C.id , s))  ω.dinatural.α (p , p) d  id)  ρ.dinatural.α p
            ≈⟨ assoc  refl⟩∘⟨ assoc  refl⟩∘⟨ refl⟩∘⟨ identityʳ ⟩∘⟨refl 
          F₁ ((f , P.id) , (C.id , P.id))  (F₁ ((C.id , P.id) , (C.id , s))  ω.dinatural.α (p , p) d  ρ.dinatural.α p)
          -- this is the hard part: we use commutativity from the bottom face of the cube.
          -- The fact that this exists (an arrow between ∫ F (p,p,- ,-) to ∫ F (p,q,- ,-)) is due to functorality of ∫ and curry₀.
          -- The square commutes by universiality of ω
            ≈⟨ refl⟩∘⟨ extendʳ ( (end-η-commute  ω (p , p)   ω (p , q)  (curry.₀.₁ (F ) (P.id , s)) d)) 
          -- now we can use dinaturality in ρ, which annoyingly has an `id` tacked on the end
          F₁ ((f , P.id) , (C.id , P.id))  ω.dinatural.α (p , q) d  ∫F.F₁ (P.id , s)  ρ.dinatural.α p
            ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨   identityʳ 
          F₁ ((f , P.id) , (C.id , P.id))  ω.dinatural.α (p , q) d  ∫F.F₁ (P.id , s)  ρ.dinatural.α p  id
            ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ρ.dinatural.commute s 
          F₁ ((f , P.id) , (C.id , P.id))  ω.dinatural.α (p , q) d  ∫F.F₁ (s , P.id)  ρ.dinatural.α q  id
            ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ identityʳ 
          F₁ ((f , P.id) , (C.id , P.id))  ω.dinatural.α (p , q) d  ∫F.F₁ (s , P.id)  ρ.dinatural.α q
          -- and now we're done. step backward through the previous isomorphisms to get dinaturality in f and s together
            ≈⟨ refl⟩∘⟨ extendʳ (end-η-commute  ω (q , q)   ω (p , q)  (curry.₀.₁ (F ) (s , P.id)) d) 
          F₁ ((f , P.id) , (C.id , P.id))  (F₁ ((C.id , s) , (C.id , P.id))  ω.dinatural.α (q , q) d  ρ.dinatural.α q)
            ≈⟨ pullˡ ( F.homomorphism  F-resp-≈ ((C.identityˡ , P.identityʳ) , (C.identity² , P.identity²))) 
          F₁ ((f , s) , (C.id , P.id))  ω.dinatural.α (q , q) d  ρ.dinatural.α q
            ≈˘⟨ refl⟩∘⟨ identityʳ 
          F₁ ((f , s) , (C.id , P.id))  (ω.dinatural.α (q , q) d  ρ.dinatural.α q)  id
          
        }
      }

  -- now the opposite direction
  private module _ (ξ : Wedge F) where
    private
      open module ξ = Wedge ξ using () renaming (E to x)
    ρ : Wedge ∫F
    ρ .apex = x
    ρ .dinatural = dtHelper record
      { α = λ p  ω.factor (p , p) record
        { E = x
        ; dinatural = dtHelper record
          { α = λ c  ξ.dinatural.α (c , p)
          ; commute = λ f  ξ.dinatural.commute (f , P.id)
          }
        }
          -- end-η-commute ⦃ ω (?) ⦄ ⦃ ω (?) ⦄ (curry.₀.₁ (F ′) (?)) ?
      ; commute = λ {p} {q} f  ω.unique′ (p , q) λ {c}  begin
        ω.dinatural.α (p , q) c  ∫F.₁ (P.id , f)  ω.factor (p , p) _  id
          ≈⟨ refl⟩∘⟨ refl⟩∘⟨ identityʳ 
        ω.dinatural.α (p , q) c  ∫F.₁ (P.id , f)  ω.factor (p , p) _
          ≈⟨ extendʳ $ end-η-commute  ω (p , p)   ω (p , q)  (curry.₀.₁ (F ) (P.id , f)) c 
        F₁ ((C.id , P.id) , (C.id , f))  ω.dinatural.α (p , p) c  ∫.factor (ω (p , p)) _
          ≈⟨ refl⟩∘⟨ ω.universal (p , p) 
        F₁ ((C.id , P.id) , (C.id , f))  ξ.dinatural.α (c , p)
          ≈˘⟨ refl⟩∘⟨ identityʳ 
        F₁ ((C.id , P.id) , (C.id , f))  ξ.dinatural.α (c , p)  id
          ≈⟨ ξ.dinatural.commute (C.id , f) 
        F₁ ((C.id , f) , (C.id , P.id))  ξ.dinatural.α (c , q)  id
          ≈⟨ refl⟩∘⟨ identityʳ 
        F₁ ((C.id , f) , (C.id , P.id))  ξ.dinatural.α (c , q)
          ≈˘⟨ refl⟩∘⟨ ω.universal (q , q) 
        F₁ ((C.id , f) , (C.id , P.id))  ω.dinatural.α (q , q) c  ω.factor (q , q) _
          ≈˘⟨ extendʳ $ end-η-commute  ω (q , q)   ω (p , q)  (curry.₀.₁ (F ) (f , P.id)) c 
        ω.dinatural.α (p , q) c  ∫F.₁ (f , P.id)  ω.factor (q , q) _
          ≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ identityʳ 
        ω.dinatural.α (p , q) c  ∫F.₁ (f , P.id)  ω.factor (q , q) _  id
          
      }
  -- This construction is actually stronger than Fubini. It states that the
  -- iterated end _is_ an end in the product category.
  -- Thus the product end need not exist.
  module _ {{eᵢ :  ( (F ) {ω})}} where
    private
      module eᵢ =  eᵢ
    eₚ :  F
    eₚ .∫.wedge = ξ eᵢ.wedge
    eₚ .∫.factor W = eᵢ.factor (ρ W)
    eₚ .∫.universal {W} {c , p} = begin
      ξ eᵢ.wedge .dinatural.α (c , p)  eᵢ.factor (ρ W)               ≈⟨ Equiv.refl 
      (ω.dinatural.α (p , p) c  eᵢ.dinatural.α p)   eᵢ.factor (ρ W) ≈⟨ assoc 
      ω.dinatural.α (p , p) c  (eᵢ.dinatural.α p   eᵢ.factor (ρ W)) ≈⟨ refl⟩∘⟨ eᵢ.universal {ρ W} {p} 
      ω.dinatural.α (p , p) c  (ρ W) .dinatural.α p                  ≈⟨ ω.universal (p , p) 
      W .dinatural.α  (c , p)                                         
    eₚ .∫.unique {W} {g} h = eᵢ.unique λ {A = p}  Equiv.sym $ ω.unique (p , p) (sym-assoc  h)
    module eₚ =  eₚ

    -- corollary: if a product end exists, it is iso
    Fubini : {eₚ' :  F}  ∫.E eᵢ  ∫.E eₚ'
    Fubini {eₚ'} = end-unique eₚ eₚ'

  -- TODO show that an end ∫ F yields an end of ∫ (⨏ (F ′) {ω})

module _ (F : Bifunctor (Category.op C ×ᶜ Category.op P) (C ×ᶜ P) D)
         {ωᴾ :  ((p , q) : Category.Obj P × Category.Obj P)   (appˡ (F ) (p , q))}
         {ωᶜ :  ((c , d) : Category.Obj C × Category.Obj C)   (appˡ (F ′′ )(c , d))}
         {{e₁ :  ( (F ) {ωᴾ})}} {{e₂ :  ( (F ′′ ) {ωᶜ})}} where
  open M D
  -- since `F` and `F′′` are functors from different categories we can't construct a
  -- natural isomorphism between them. Instead it is best to show that eₚ F is an end in
  -- ∫ (F ′′) or vice-versa, and then Fubini follows due to uniqueness of ends
  open Wedge renaming (E to apex)
  private
    eₚ′′ :  (F ′′)
    eₚ′′  .∫.wedge .apex = eₚ.wedge.E F
    eₚ′′  .∫.wedge .dinatural = dtHelper record
      { α = λ (p , c)  eₚ.dinatural.α F (c , p)
      ; commute = λ (s , f)  eₚ.dinatural.commute F (f , s)
      }
    eₚ′′  .∫.factor W = eₚ.factor F record
      { W ; dinatural = dtHelper record
        { α = λ (c , p)  W.dinatural.α (p , c)
        ; commute = λ (f , s)  W.dinatural.commute (s , f)
        }
      }
      where module W = Wedge W
    eₚ′′  .∫.universal {W} {p , c} = eₚ.universal F
    eₚ′′  .∫.unique {W} {g} h = eₚ.unique F h

  Fubini′ : ∫.E e₁  ∫.E e₂
  Fubini′ = ≅.trans (Fubini F {ωᴾ} {eₚ' = eₚ F}) $
            ≅.trans (end-unique eₚ′′ (eₚ (F ′′)))
                    (≅.sym (Fubini (F ′′) {ωᶜ} {eₚ' = eₚ (F ′′)}))